基于EEMD和萤火虫算法优化SVM的溶解氧预测
发布时间: 2022-07-09 访问次数: 15
《基于EEMD和萤火虫算法优化SVM的溶解氧预测》
技术简介:
养殖池塘中的溶解氧(DO)对水产品的生长和品质有着至关重要的作用。为了提高溶解氧预测的准确性和有效性,提出了一种基于集合经验模态分解(EEMD)和萤火虫算法(FA)优化支持向量机(SVM)的组合预测模型。首先,将DO时间序列通过集合经验模态分解为一组去除噪声的并相对稳定的子序列。接着,利用相空间重构(PSR)重建分解子序列,在相空间中用SVM对各子序列进行建模预测。然后,利用萤火虫算法对SVM的参数进行优化,建立基于SVM的预测模型,最后得到原始DO序列的预测值。为了获得未来24小时的预测结果,采用单点迭代法实现多步预测。仿真结果表明,所提出的EEMD-FA-SVM组合预测模型比FA-SVM、EEMD-FA-BP和EEMD-PSO-SVM等模型具有更好的预测效果,能够满足现代渔业养殖水质精细化管理的高需求。
研发人员:刘晨;李莎;丛孙丽;朱正伟;